skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McElroy, Robby_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hydrogel materials can be used to integrate bacteria cells into biohybrid systems. Here, we investigate the use of polyethylene glycol-based hydrogels that employ different Michael-type addition crosslinking chemistries, including thiol-acrylate, thiol-vinyl sulfone, and thiol-maleimide click reactions, for covalent hydrogel network formation and bacteria encapsulation. All crosslinking chemistries generated hydrogels that provided stable encapsulation and culture ofBacillus subtilis; however, significant differences in cell viability and cell morphology after encapsulation were identified. Thiol-acrylate hydrogels provided the highest cell viability and favored encapsulation of single cells, while thiol-maleimide hydrogels had the lowest cell viability and favored encapsulation of larger aggregates. These findings demonstrate the impact of crosslinking strategies for encapsulation of microorganisms into hydrogel networks and suggest that thiol-acrylate chemistries are favorable for many applications. Graphical abstract 
    more » « less